Quantum Computing Concepts: Towards a new Programming Paradigm

Dr Manuel A. Serrano | 18/11/2020 @ 1500 | Virtual | Part of the SET Digital Series

Abstract At the dawn of the last century, the basis of “quantum mechanics” was established by many exceptional scientists, such as Einstein, Schrödinger, Heisenberg or Pauli. This theory describes the behaviour of nature at subatomic levels (photons, electrons, etc). In 1982, Nobel laureate Richard Feynman asked: “What kind of computer are we going to use to simulate physics?” This is how the idea for quantum computing was born. Quantum computers attempt to use various “counterintuitive” principles such as superposition (objects can be in different states at the same time) and entanglement (objects can be deeply connected without any direct physical interaction) in the effort to provide faster computing speed. We can already use quantum computers and take advantage of their huge computation capacity to solve problems which are considered very difficult for today’s and tomorrow’s “classic” computers. This new computing paradigm has a great deal of direct applications, and many other potential ones. For example, applications include economics, chemistry, medicine, logistics, energy and agriculture. All the applications mentioned will not be accomplished with quantum computers alone; these applications need quantum software. In this seminar the fundamental quantum concepts are exposed, with special emphasis on those that must be known by those who wish to begin the approach to the world of Quantum Software Engineering and Programming. This seminar offers an interesting “tour” of Quantum Concepts such as Quantum Mechanics, Qubits, Hilbert Space and Quantum Circuits.

Bio Dr. Manuel Serrano is MSc and Ph.D. in Computer Science and is an associate professor at the University of Castilla – La Mancha (Spain) since 2000. Currently, he is Vice-Dean of the Department of Technologies and Information Systems since May 2014 and Coordinator of Business Internships of the master’s degree in Computer Engineering since 2013. Regarding his research interests, he is working on quantum software engineering, cybersecurity (especially in Big Data and IoT), data quality, software quality, and measurement and business intelligence.­­­ His scientific production is large, having published more than fifty papers in high-level journals and conferences. He has participated in more than 20 research projects, has conducted several invited speeches and have work in several transfer project with companies. Currently, he is a member of the aQuantum scientific research team (Alarcos Research Group).

 


We are pleased to announce our new seminar series starting on 18/11/2020

SET Digital: Software Engineering Transforming the Digital Future
We have a list of lined up topics and speakers to come ahead. But please if you would like to suggest new topics or have speakers in mind, let us know and we can incorporate. These are several of the topics:

  • Security and privacy
  • Big Code (Mining of software repositories)
  • Machine Learning and Big Data
  • Blockchain-oriented software engineering
  • Microservices and Surveillance
  • Green and Sustainable Software Engineering
  • Internet of Things

Our first and virtual seminar will be on the 18th of November at 3pm. For more details please click here.

Virtual Seminar: Experimenting with Classifiers

Speaker: Martin Shepperd

Overview:

1. Much machine learning research is empirical in nature (analytic solutions are intractable).
2. So we conduct experiments…
3. where the competing algorithms are *treatments*, the datasets are *experimental units* and classification performance is the *response measure*,
4. and the experimental design is typically *repeated measures*.
5. This view of machine learning research should inform the study design and analysis.
6. Failure to do so helps explain the unreliability of many published `results’.

Virtual Seminar: Static Microservice Architecture Recovery Using Model-Driven Engineering

Speaker: Nuha Alshuqayran

Abstract: In recent years, the software development industry has witnessed effective changes which have led to the development of new architectural styles of software. In this respect, this seminar presents research work aimed to support the microservice architectural style. Software developed using the microservice architecture is complex and distributed and involves several technologies and components. Reverse engineering and specifically Architecture Recovery can aid in the understanding and maintenance of microservice systems. We present how we are developing our MicroService Architecture Recovery (MiSAR) approach, which allows software engineers to recover architectures of microservice systems. MiSAR follows Model Driven Engineering and includes different models such as modelling languages for Microservice architecture and undertakes transformation of models as a set of mapping rules for microservice based systems. In the seminar, we will demonstrate how our approach is capable of obtaining expressive architectural models of microservice systems in an effective way.

Virtual Seminar: Multiparty Session Programming with Global Protocol Combinators

Speaker: Dr Rumyana Neykova

Abstract: Checking compatibility of concurrent programs, i.e. if two or more processes can communicate without errors, is a pressing problem in the verification community.  State-of-the-art verification tools are limited to model-checkers and SMT solvers, which are foreign to many developers and too computationally expensive to use in practice.
In this talk, I will demonstrate a new approach to programming and verification of concurrent and distributed programs. The approach relies on a few compositional constructs, called global protocol combinator (GPC). I will show an encoding of a popular theory for communicating programs into GPC.  Such encoding reveals that the problem of checking compatibility can be reduced to the standard problem of variant/record subtyping. This realisation allows type systems of existing general-purpose programming languages to be utilised for static detection of concurrency bugs, without the need for external model checkers. I will show an implementation of our encoding in native OCaml and will discuss its expressive power and performance. We have tested the approach by implementing and verifying a plethora of concurrency algorithms, as well as several popular communication protocols (DNS, OAuth, and SMPT).

We are recruiting two new funded PhD Students.

Project One

Securing Microservices with Just-In-Time Model Verification – Dr Nour Ali & Dr Rumyana Neykova – Project details here

Project Two

The REWIND Project (Does REfactoring Software Work? An INDustrial and Open-source Approach) – Professor Steve Counsell & Dr Mahir Arzoky – Project details here

Application Guidelines Please click here to download.

Application Deadline 29/05/2020

The BSEL seminar was held at WLFB BSEL Lab (3rd floor of Wilfred Brown) at 3:00PM.

A talk from Dr Lucas Gren titled ‘Research on affect in SE (new angles from social psychology research’.

There has been an increase in the interest of human factors in SE in recent years. Most new research fields that start to look at psychological aspects, start with individual psychology since people are different and that makes intuitive sense to everyone. While these are important aspects, the social psychology research field also highlights the importance of a profound understanding of the complex interplay between social context and affect, since affect influence cannot be explained in isolation. In this talk, I would like to introduce under which judgemental circumstances people are affected by affect and suggest how to add social context to studies on affect. I also reflect on why the individual focus in human factors of SE is so rigid and attribute much of it to an over-belief in the benefits of digitalization (e.g. biometrics). Another part of the problem, the way I see it, is that these new digital solutions aim at maximizing happy feelings while social psychology studies suggest that is not how to maximize effectiveness or long-term high motivation in employees.