
Verifying DRF in GPU programs

Tiago Cogumbreiro, UMass Boston

Joint work with

Julien Lange, Royal Holloway, University of London

Dennis Liew Zhen Rong, UMass Boston

Hannah Zicarelli, UMass Boston

March 10, 2021

Brunel, Univerisity of London

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 1 / 34

Today's talk

Motivation

Why do GPUs matter?

Why we should care about static veri�cation of GPU programs?

Contributions

By how much do we improve the state of the art?

Our technique

How we improve the state of the art

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 2 / 34

Motivation

3 / 34

Why do GPUs matter?

GPUs are everywhere

4 / 34

GPUs are a computing cornerstone

of scienti�c advancement

5 / 34

Name GPU

1 Supercomputer Fugaku ☐

2 Summit 🗹
3 Sierra 🗹
4 Sunway TaihuLight ☐

5 Selene 🗹
6 Tianhe-2A 🗹
7 JUWELS Booster Module 🗹
8 HPC5 🗹
9 Frontera 🗹

10 Dammam-7 🗹
www.top500.org/lists/top500/2020/11/highs/

Credit: Carlos Jones/ORNL

GPUs in High Performance Computing (HPC)

Power 8 out of 10 of the Top 10 super computers

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 6 / 34

https://www.top500.org/lists/top500/2020/11/highs/
https://www.flickr.com/photos/olcf/42957291821/in/photolist-NsW4ML-25mPCpZ-JkN2vk-28rZmfr-YYYjk1-282ZTzq-271XTpf-271XZao-26JSfsB-25mPBPa-287nqxR-FENxmy-22HVvNY-227b4AU-XgBEPE-W6iPRi-XZZrnP-28rxs9o-XqcFKR-28rZmpK-H4EmiH-27ZDEwH-26JSngB-279g4ti-25moRES-28vVuuM

GPUs powering chemestry

doi:10.1016/j.jmgm.2010.06.010

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 7 / 34

https://dx.doi.org/10.1016/j.jmgm.2010.06.010

GPUs powering biology

doi:10.1093/bib/bbq006

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 8 / 34

https://dx.doi.org/10.1093/bib/bbq006

GPUs power the AI revolution

9 / 34

Autoware.AI
Autoware.AI is the world's �rst "All-in-One" open-source software for autonomous driving
technology.

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 10 / 34

Why we should care about static
veri�cation of GPU programs?

11 / 34

GPU programming, a primer
① High-level of parallelism at a reduced cost

(faster processing, lower cost, reduced power consumption)

② Techniques designed for CPUs do not work for GPUs

(hardware assumptions differ: memory available, execution model)

③ GPUs are dif�cult to program and debug

12 / 34

GPU programming is dif�cult
high degree of parallelism (up to tens of thousand of threads)

high degree of concurrency (up to 1,024 threads accessing the same array)

unconstrained access to a shared memory (no locks)

thousands of threads indexing disjoint portions of arrays

devices are memory constrained (affects debugging techniques)

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 13 / 34

GPU program example

Source:

Optimizing matrix transpose in CUDA. NVIDIA CUDA SDK Application Note 18 (2009)

Also in:

Padding free bank con�ict resolution for CUDA-based matrix transpose algorithm.
DOI: 10.1109/SNPD.2014.6888709

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 14 / 34

https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://doi.org/10.1109/SNPD.2014.6888709

GPU program example

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 15 / 34

GPU program example

0 1

0 1

1 0

1 0

thread (0,1)

thread (1,0)

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 16 / 34

GPU data-races

Data-race

Two threads accessing the same array index concurrently

At least one thread writing

Data-Race Freedom (DRF) analysis

Show that for all possible inputs and executions a program is absent of data-races.

A trivial data-race example (every thread writes to postion 0)

A[0] = 1;

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 17 / 34

GPU program example

Exhibits a data-race: the code after __syncthreads() of iteration i + 1 runs concurrently
with the code before __syncthreads() of iteration i.

Outer loops is used to measure the bene�t of an optimization

Data-race corrupts the data in the array and affects the time measurements

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 18 / 34

Contributions

19 / 34

Contributions

Theoretical (Part 2)

a novel analysis of data-race freedom

a formalization of such analysis using a proof assistant

Practical (Part 1)

an implementation of the analysis (Part 1)

the largest comparative study of its kind (Part 1)

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 20 / 34

Faial (our tool) GPUVerify PUG

Lowest false-positive rate
Dataset of 227 data-race free real-world kernels

Can verify 41% more kernels than others

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 21 / 34

Best compromise time/memory

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 22 / 34

Highest scalability
Vary the number of constructs from 1 to 50 (250 kernels in total)

Out of 5 tools, the only that scales linearly (time) (PUG, GPUVerify, GKlee, SESA)

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 23 / 34

Limitations of our analysis
Cannot handle more than 13 nested synchronized loops

3rd out of 5 tools

We found a maximum nesting level of 3 in our experiments

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 24 / 34

Our approach

A behavioral type (syntax+semantics)

Results on the correctness of the analysis

Mechanized proofs using the Coq proof assistant (18,000 LOC)

25 / 34

Simpli�ed running example
A CUDA example, which simpli�es our initial example

Exhibits the same root cause (data-race)

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 26 / 34

➊

➊

➋

➋

➌

➌

➍

➍

27 / 34

Memory access protocols
Behavioral types for SIMT/SPMD that capture memory accesses

One type per array. Capture: accesses, synchronization, structured loops

Distinguish between synchronized/unsynchronized loops

➊ ➋

➊ ➋

➌ ➍

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 28 / 34

The data-race protocol

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 29 / 34

Proving that data-race exists
Interpret unsynchronized loops as forall-binders:

compare one iteration of each loop of each thread

collapses all the iterations of a single loop into one

One formula per thread; data-race: , , , : rd[1] and wr[1]t =1 0 t =2 1 j =1 1 M > 1

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 30 / 34

Aligning protocols
We de�ne a notion of aligned protocols, where accesses do not "leak" across iterations

We show that all protocols can be aligned (modulo notion of well-formedness)

Intuition: unfold loop and rearrange accesses

➋

➌

➊ ➋ ➌ ➍

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 31 / 34

Splitting protocols

➊ ➋ ➌ ➍

➌

➍

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 32 / 34

Splitting protocols
Syntax-oriented extraction of unsynchronized fragments

Compositional analysis (no data-races between fragments)

Synchronized loop variables can also be interpret as a forall-binder

However, the binder must be shared by both threads (ie, only one r variable shared by
both threads)

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 33 / 34

Conclusion
Behavioral types being used to enforce data-race freedom

A compositional analysis, formally proved

Large experimental evaluation (229 real-world + 258 synthetic = 487 kernels)

Used our tool to con�rm data-races found in the wild

Our approach is more scalable and more precise (fewer false-positives) than related
work

Source code and proofs available in a free software license

https://gitlab.com/umb-svl/faial
https://gitlab.com/umb-svl/faial-coq

Verifying DRF in GPU programs ⚯ Tiago Cogumbreiro 34 / 34

https://gitlab.com/umb-svl/faial
https://gitlab.com/umb-svl/faial-coq

