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Today's talk

Motivation

Why do GPUs matter?

Why we should care about static veri�cation of GPU programs?

Contributions

By how much do we improve the state of the art?

Our technique

How we improve the state of the art
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Motivation
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Why do GPUs matter?

GPUs are everywhere
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GPUs are a computing cornerstone

of scienti�c advancement
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Name GPU

1 Supercomputer Fugaku ☐

2 Summit 🗹
3 Sierra 🗹
4 Sunway TaihuLight ☐

5 Selene 🗹
6 Tianhe-2A 🗹
7 JUWELS Booster Module 🗹
8 HPC5 🗹
9 Frontera 🗹

10 Dammam-7 🗹
www.top500.org/lists/top500/2020/11/highs/

Credit: Carlos Jones/ORNL

GPUs in High Performance Computing (HPC)

Power 8 out of 10 of the Top 10 super computers
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GPUs powering chemestry

doi:10.1016/j.jmgm.2010.06.010
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GPUs powering biology

doi:10.1093/bib/bbq006
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GPUs power the AI revolution
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Autoware.AI
Autoware.AI is the world's �rst "All-in-One" open-source software for autonomous driving
technology.
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Why we should care about static
veri�cation of GPU programs?
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GPU programming, a primer
① High-level of parallelism at a reduced cost

(faster processing, lower cost, reduced power consumption)

② Techniques designed for CPUs do not work for GPUs

(hardware assumptions differ: memory available, execution model)

③ GPUs are dif�cult to program and debug
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GPU programming is dif�cult
high degree of parallelism (up to tens of thousand of threads)

high degree of concurrency (up to 1,024 threads accessing the same array)

unconstrained access to a shared memory (no locks)

thousands of threads indexing disjoint portions of arrays

devices are memory constrained (affects debugging techniques)
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GPU program example

Source:

Optimizing matrix transpose in CUDA. NVIDIA CUDA SDK Application Note 18 (2009)

Also in:

Padding free bank con�ict resolution for CUDA-based matrix transpose algorithm. 
DOI: 10.1109/SNPD.2014.6888709
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GPU program example
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GPU program example

0 1

0 1

1 0

1 0

thread (0,1)

thread (1,0)
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GPU data-races

Data-race

Two threads accessing the same array index concurrently

At least one thread writing

Data-Race Freedom (DRF) analysis

Show that for all possible inputs and executions a program is absent of data-races.

A trivial data-race example (every thread writes to postion 0)

A[0] = 1;
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GPU program example

Exhibits a data-race: the code after __syncthreads() of iteration i + 1 runs concurrently
with the code before __syncthreads() of iteration i.

Outer loops is used to measure the bene�t of an optimization

Data-race corrupts the data in the array and affects the time measurements
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Contributions
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Contributions

Theoretical (Part 2)

a novel analysis of data-race freedom

a formalization of such analysis using a proof assistant

Practical (Part 1)

an implementation of the analysis (Part 1)

the largest comparative study of its kind (Part 1)
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Faial (our tool) GPUVerify PUG

Lowest false-positive rate
Dataset of 227 data-race free real-world kernels

Can verify 41% more kernels than others
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Best compromise time/memory
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Highest scalability
Vary the number of constructs from 1 to 50 (250 kernels in total)

Out of 5 tools, the only that scales linearly (time) (PUG, GPUVerify, GKlee, SESA)
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Limitations of our analysis
Cannot handle more than 13 nested synchronized loops

3rd out of 5 tools

We found a maximum nesting level of 3 in our experiments
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Our approach

A behavioral type (syntax+semantics)

Results on the correctness of the analysis

Mechanized proofs using the Coq proof assistant (18,000 LOC)
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Simpli�ed running example
A CUDA example, which simpli�es our initial example

Exhibits the same root cause (data-race)
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Memory access protocols
Behavioral types for SIMT/SPMD that capture memory accesses

One type per array. Capture: accesses, synchronization, structured loops

Distinguish between synchronized/unsynchronized loops

➊ ➋

➊ ➋

➌ ➍
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The data-race protocol
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Proving that data-race exists
Interpret unsynchronized loops as forall-binders:

compare one iteration of each loop of each thread

collapses all the iterations of a single loop into one

One formula per thread; data-race: , , , : rd[1] and wr[1]t  =1 0 t  =2 1 j  =1 1 M > 1
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Aligning protocols
We de�ne a notion of aligned protocols, where accesses do not "leak" across iterations

We show that all protocols can be aligned (modulo notion of well-formedness)

Intuition: unfold loop and rearrange accesses

➋

➌

➊ ➋ ➌ ➍
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Splitting protocols

➊ ➋ ➌ ➍

➌

➍
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Splitting protocols
Syntax-oriented extraction of unsynchronized fragments

Compositional analysis (no data-races between fragments)

Synchronized loop variables can also be interpret as a forall-binder

However, the binder must be shared by both threads (ie, only one r variable shared by
both threads)
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Conclusion
Behavioral types being used to enforce data-race freedom

A compositional analysis, formally proved

Large experimental evaluation (229 real-world + 258 synthetic = 487 kernels)

Used our tool to con�rm data-races found in the wild

Our approach is more scalable and more precise (fewer false-positives) than related
work

Source code and proofs available in a free software license

https://gitlab.com/umb-svl/faial
https://gitlab.com/umb-svl/faial-coq
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